Центр боли в головном мозге

Центр боли в головном мозге thumbnail

Блокаторы циклооксигеназы работают на периферии. И они вообще не влияют на нервные клетки, поэтому, например, к ним не возникает привыкания и зависимости — по крайней мере, в явном виде. А если вы начинаете использовать вещества, похожие на ГАМК, вещества, похожие на эндорфины, которые будут влиять уже на синаптическую передачу в спинном мозге, здесь вы должны быть готовы к тому, что будет формироваться и привыкание, и зависимость.

Основной группой препаратов из этой категории являются морфиноподобные соединения, потому что морфин — это молекула, которая похожа на эндорфины. С давних времен опиоиды и опиум использовались, для того чтобы снимать боль. К сожалению, морфин и морфиноподобные молекулы вызывают очень быстрое привыкание и зависимость — к сожалению потому, что сейчас мы уже настолько хорошо знаем систему болевой чувствительности, что нам понятно: по-настоящему сильную боль мы можем снимать только морфиноподобными молекулами эффективно и надежно. То есть сама передача сигнала в синапсах, которые в задних рогах серого вещества так организована, что, если мы очень мощно активируем морфиноподобное торможение, мы можем выключить вообще любую боль. Это то, что не способны сделать аспирин, анальгин.

Морфиноподобными препаратами мы можем вообще блокировать болевую чувствительность. При этом не пострадает, например, кожная чувствительность, мышечная, потому что подобный информационный фильтр есть только в тех каналах, которые передают болевые сигналы. Но морфиноподобные молекулы, к сожалению, вызывают очень быстрое привыкание и зависимость. Очень быстро модифицируется работа синапсов, начинает требовать еще, еще и еще эту молекулу. Поэтому, конечно, медицинское использование подобных веществ строго ограничено. Все это сугубо рецептурные препараты, и применять их нужно только в экстренных случаях: при тяжелых ожогах, онкологии или тяжелых физических травмах. Дело усугубляется тем, что морфиноподобные молекулы работают в центрах положительных эмоций, вызывают эйфорию.

Если болевой сигнал достаточно силен, то он проходит через задние рога серого вещества спинного мозга. Дальше у него две судьбы. Он может запускать реакции, рефлексы на уровне спинного мозга и подниматься в головной мозг. Рефлексы на уровне спинного мозга всем известны — это рефлексы отдергивания. В ситуации, когда вы укололи или обожгли руку и ее отдернули, идет сокращение мышц-сгибателей. Это очень древняя программа, которая носит оборонительный характер, и без этого мы не существуем. Это врожденный рефлекс, мы не обучаемся ему.

А когда сигнал передается в головной мозг, нужны специальные тракты, специальные пути. Аксоны клеток заднего рога серого вещества спинного мозга внутри спинного мозга переходят на противоположную сторону и в боковом канальчике белого вещества поднимаются в головной мозг и достигают таламуса. Таламус — это информационный фильтр на входе в кору больших полушарий, и там есть зрительные центры, слуховые центры, двигательные центры, в том числе центры, связанные с передачей боли. Эти центры находятся во внутренней части таламуса, в медиальных ядрах таламуса. И оттуда сигнал уходит в кору больших полушарий.

Кроме того, часть сигналов идет ниже и достигает гипоталамуса. В гипоталамусе располагаются центры, связанные с нашими потребностями, эмоциями, центры, которые запускают реакцию на стресс. И для этих центров болевые сигналы очень важны. Гипоталамус обеспечивает такое эмоциональное восприятие боли, и наш мозг сконфигурирован таким образом, что боль со стопроцентной вероятностью вызывает негативные эмоции. И чем сильнее боль, тем сильнее эти негативные эмоциональные переживания. Это все логично, это заставляет мозг формировать поведенческие программы, направленные на избегание боли.

За реакцию на боль отвечает в основном задняя часть гипоталамуса, и там находятся нервные клетки, которые запускают изменения в вегетативной нервной системе. Возникает стрессорное состояние, начинает чаще биться сердце, расширяются зрачки, усиливается потоотделение, начинает выделяться адреналин из надпочечников. Кроме того, в задней части гипоталамуса находятся центры, которые активируют оборонительное поведение.

И там еще одна важная развилка. Эта реакция может наступать в виде реакции страха, убегания, избегания, затаивания либо как агрессивная реакция, когда мы как бы нападаем на источник неприятностей. Основной поток болевых сигналов из таламуса поднимается в кору больших полушарий. И здесь есть два варианта.

Первый поток идет специфично в теменную кору, в теменную долю. Это примерно макушка нашей головы, и, если вниз от макушки вот так проводить, вот здесь находятся зоны, которые анализируют чувствительность нашего тела, в том числе здесь есть карта нашего тела, позволяющая оценить болевые сигналы, их интенсивность, специфику, потому что боль бывает разная: острая, тянущая, ноющая.

Кроме того, есть такой тотальный неспецифический поток из таламуса на всю кору больших полушарий, который подтормаживает работу мозга. И специфика болевых сигналов такова, что, когда такой сигнал поднимается в кору, он говорит всем остальным нервным процессам, что нужно прекращаться, нужно разбираться, где болит, где повреждение. В этом смысле боль имеет первый приоритет, и когда у вас что-то заболело, то заниматься какой-то другой деятельностью бывает сложно, особенно если это сильная боль.

Источник

Ноцице́пция; ноциперце́пция; физиологи́ческая боль — это активность в афферентных (чувствительных) нервных волокнах периферической и центральной нервной системы, возбуждаемая разнообразными стимулами, обладающими пульсирующей интенсивностью. Данная активность генерируется ноцицепторами, или по-другому рецепторами боли, которые могут отслеживать механические, тепловые или химические воздействия, превышающие генетически установленный порог возбудимости. Получив повреждающий стимул, ноцицептор передаёт сигнал через спинной мозг и далее в головной. Ноцицепция сопровождается также самыми разнообразными проявлениями и может служить для возникновения опыта боли у живых существ.

Распознавание повреждающих сигналов[править | править код]

Механические, тепловые и химические стимулы распознаются чувствительными нервными волокнами, именуемыми ноцицепторами, которые расположены на коже и во внутренних областях, таких как надкостница или суставные поверхности. Концентрация ноцицепторов по всему телу различается, в основном они находятся на кожной поверхности и менее всего встречаются в глубоких внутренних поверхностях. Все ноцицепторы являются свободными нервными окончаниями, которые состоят только из конечных разветвлений осевого цилиндра чувствительного нейрона, благодаря чему и получили такое название, и они находятся вне ствола спинного мозга в спинном ганглии.

Ноцицепторы обладают определённым порогом чувствительности, то есть необходим некоторый минимальный уровень стимуляции прежде, чем они приведут к генерации сигнала. В некоторых случаях возбудимость чувствительных волокон становится чрезмерной, превышая действительный уровень воздействия болевого стимула, что приводит к состоянию, называемому гиперчувствительностью к боли. Как только порог достигнут, сигнал передаётся по аксону нерва в спинной мозг.

Передача болевых сигналов в центральную нервную систему[править | править код]

Существуют два направления, по которым происходит передача сигналов в головной мозг. Это неоспинобугорный путь (для быстрой боли) и палеоспинобугорный путь (для медленной боли).

Неоспиннобугорный путь[править | править код]

Быстрая боль направляется через Aδ-волокна, которые заканчиваются в сегменте I заднего рога спинного мозга. Здесь вторые по порядку в этом пути, передаточные нейроны вступают в дальнейший контакт и поднимают сигнал через позвоночные столбы. Эти волокна затем пересылают сигнал в вентролатеральные ядра таламуса. Оттуда третьи нейроны связываются с соматосенсорными полями коры головного мозга. Быстрая боль легко локализуется, если Aδ-волокна стимулируются совместно с тактильными рецепторами.

Палеоспиннобугорный путь[править | править код]

Медленная боль передаётся через медленный тип С-волокон к сегментам II и III заднего рога спинного мозга, также именуемым студенистым веществом. Здесь вторые по порядку в этом пути нейроны контактируют и пересылают сигнал в сегмент V заднего рога спинного мозга. Затем третьи нейроны присоединяются к волокнам быстрого пути, и направляются через переднелатеральный путь. Эти нейроны широко распространены в стволе мозга, одна десятая часть которых завершается в таламусе, а остальные — в продолговатом мозге, мосту и среднем мозгу. Медленную боль сложно локализовать.

Обезболивание[править | править код]

Отвлечение[править | править код]

Организм по всему телу имеет несколько разных видов опиодных рецепторов, которые участвуют в реакции, связанной с выработкой внутренних эндорфинов. При возникновении стороннего возбуждения эти рецепторы могут тормозить активность нейронов, которые в ином случае стимулировались бы ноцицепторами.

Согласно теории «контроля ворот», предложенной Патриком Уоллом и Роном Мелзаком, «ворота» для потока болевых импульсов «закрываются» другими безболезненными стимулами, такими как вибрация. Таким образом, может оказаться, что потирание ушибленного колена ослабляет боль, предотвращая её передачу в мозг. «Закрывание ворот» также может происходить, если сигналы, поступающие из мозга в спинной мозг, подавляются поступающей информацией о другой боли.

Фармакологические методы[править | править код]

Для обезболивания используют несколько видов лекарственных препаратов (см. анальгетики):

  1. Ненаркотические анальгетики,
  2. Наркотические анальгетики,

а также

  1. Противовоспалительные препараты

Другие методы[править | править код]

  • Электрообезболивание
  • Психологический тренинг — например, современная методика обезболивания родов
  • Генетические методы

Обнаружен ген, отключение которого у человека приводит к полной потере болевой чувствительности. Этот ген (SCN9A) находится на второй хромосоме и кодирует белок, участвующий в транспорте ионов натрия через мембраны нейронов, отвечающих за болевые ощущения.[1]

Реакции, вызываемые ноцицепцией[править | править код]

Когда ноцицепторы стимулируются, они передают сигналы через сенсорные нейроны в спинном мозге. Эти нейроны высвобождают глютамат, главный нейромедиатор, который пересылает сигналы от одного нейрона к другому через синапсы. Если сигналы поступают в ретикулярную формацию и таламус, ощущение боли возникает в сознании в тупой, плохо локализуемой форме. Из таламуса сигнал может направляться в соматосенсорную кору головного мозга, и тогда боль локализуется более чётко и ощущается с более определёнными характеристиками. Ноцицепция может также вызывать менее определённые автоматические реакции, не зависимые от сознания, такие как бледность, потоотделение, брадикардию, гипотонию, головокружение, тошноту и обморок.

Происхождение термина[править | править код]

Термин «ноцицепция» был введен Чарльзом Скоттом Шеррингтоном, чтобы более чётко дифференцировать между физиологическим характером нервной активности при повреждении ткани и психологической реакцией на физиологическую боль. Слово «ноцицепция» происходит от латинских слов nocere — вредить и capere — брать, взять, принимать.

См. также[править | править код]

  • Ангиозная боль.
  • Обезболивание.
  • Плацебо.
  • Проприоцепция (ощущение положения в пространстве).

Примечания[править | править код]

Ссылки[править | править код]

  • Виртуальная реальность снимает фантомные боли // Компьютерра, 17 ноября 2006

Источник

Передача боли в головном мозге. Прерывание болевой импульсации

Полное удаление соматосенсорной коры большого мозга не устраняет способности животного ощущать боль. Следовательно, возможно, что болевые импульсы, поступающие в ретикулярную формацию мозгового ствола, таламус и другие центры нижних отделов головного мозга, вызывают осознанное восприятие боли. Это не означает, что кора большого мозга не играет никакой роли в нормальной оценке боли.

Электрическое раздражение корковых соматосенсорных областей сопровождается ощущением умеренной боли у человека, но это справедливо в отношении лишь примерно 3% стимулируемых точек. Однако даже если болевое ощущение является в основном функцией нижерасположенных центров, полагают, что кора играет особо важную роль в оценке качества боли.

Особая способность болевых сигналов повышать общую возбудимость головного мозга. Электрическая стимуляция областей ретикулярной формации мозгового ствола и внутрипластинчатых ядер таламуса, где оканчиваются пути, проводящие сигналы медленной мучительной боли, оказывает мощное возбуждающее влияние на нервную активность всех областей головного мозга. Фактически эти две области входят в состав основной возбуждающей системы головного мозга. Это объясняет, почему человек практически не может заснуть при наличии у него сильной боли.

болевая импульсация

Хирургическое прерывание болевых путей. При наличии у человека сильной, не поддающейся лечению боли (иногда в результате быстрораспространяющегося рака), ее необходимо облегчить. С этой целью можно прервать нервные болевые пути в любой из нескольких областей. Если источник боли расположен в нижней части тела, боль часто облегчается на период от нескольких недель до нескольких месяцев с помощью хордо-томии на уровне грудного отдела спинного мозга.

Для этого спинной мозг на стороне, противоположной боли, частично перерезается в его переднебоковом квадранте, что прерывает переднебоковой чувствительный путь. Однако хордотомия не всегда облегчает боль по двум причинам. Во-первых, многие болевые волокна от верхней части тела не переходят на противоположную сторону спинного мозга до тех пор, пока не достигнут головного мозга, а при хордотомии эти волокна не перерезаются.

Во-вторых, через несколько месяцев боль часто возвращается, отчасти в результате сенситизации других путей, которые в норме слишком незначительны и потому неэффективны (например, небольшое число волокон в заднебоковой части спинного мозга). Для облегчения боли экспериментально разработана другая хирургическая процедура, использующая катетеризацию специфических болевых областей во внутрипластинчатых ядрах таламуса, что часто облегчает мучительную боль, в то же время не изменяя восприятие острой боли — важного защитного механизма.

— Также рекомендуем «Обезболивающая система. Подавление болевой импульсации»

Оглавление темы «Боль. Пути и механизмы передачи боли»:

1. Функция таламуса в соматических ощущениях. Корковый контроль чувствительности

2. Боль. Классификация боли — быстрая и медленная боль

3. Поражение ткани и боль. Ишемия как причина боли

4. Пути передачи болевых сигналов. Передача боли в спинном мозге

5. Палеоспинальный путь передачи боли. Палеоспиноталамический путь боли

6. Передача боли в головном мозге. Прерывание болевой импульсации

7. Обезболивающая система. Подавление болевой импульсации

8. Торможение проведения болевых сигналов. Электрическая стимуляция при боли

9. Причины висцеральной боли. Париетальная боль

10. Локализация висцеральной боли. Пути передачи висцеральной боли

Источник

Всё о том, как возникает это чувство и можем ли мы им управлять.

Откуда берётся боль

Боль — это эволюционно выгодный механизм. Она сообщает о повреждениях, которые требуют внимания: «Проблема! Сделай что-нибудь, а то мы истечём кровью».

Чтобы механизм был эффективным, боль должна правильно отображать характер повреждений, но это происходит далеко не всегда. Одно и то же повреждение может ощущаться по-разному, а иногда вообще не чувствоваться. Например, увлёкшись каким-то делом, вы можете не заметить, что порезались. Нервы мгновенно передают сигнал о повреждении, а вы замечаете порез, только когда видите кровь.

В то же время люди могут чувствовать несуществующие повреждения. Например, в своей книге «Мозг рассказывает» профессор нейрофизиологии Вилейанур Рамачандран описывает своего пациента, который чувствовал боль в сжатом кулаке ампутированной руки. Когда с помощью системы зеркал пациент увидел отражение другой руки и разжал кулак, фантомная боль исчезла.

Есть ещё один хороший пример : строителю в ботинок воткнулся длинный гвоздь. Любое движение гвоздя вызывало сильную боль, и, чтобы вытащить его, строителю дали обезболивающее. Когда гвоздь извлекли и сняли ботинок, оказалось, что нога не повреждена. Гвоздь прошёл между пальцев, не задев кожи. Бедняга тут же исцелился.

Этот и многие другие случаи доказывают, что мозгу далеко до объективности. Да, наши ощущения сильно зависят от рецепторов, но не только от них. Рецепторы не могут быть субъективными: они честно отсылают данные о том, что произошло в тканях, а вот как это интерпретирует мозг — совсем другой вопрос.

Мы разберём, какие механизмы ответственны за восприятие боли и ошибки в интерпретации, как она возникает и путешествует по нервным клеткам организма.

Как в мозге рождается боль

Сигналы передаются от рецепторов в спинной мозг

В своей статье о боли нейробиолог Гермес Солензол (Hermes Solenzol) описал, как боль добирается от рецепторов до мозга.

Болевые рецепторы — ноцицепторы — состоят из миллиардов нервных волокон разных типов. Более крупные А-волокна передают быструю боль, например от укола иглой. Мелкие С-волокна чуть запаздывают и передают сигналы о более медленной и продолжительной боли. Вместе эти рецепторы обеспечивают чувствительность кожи, мышц, суставов, глубоких тканей и внутренних органов.

Тела нейронов, отдающих нервные волокна любого типа, лежат в спинномозговых ганглиях — нервных узлах, расположенных по бокам спинного мозга. Через них информация о повреждении попадает в задний корешок спинного мозга. При этом один сигнал может подавлять другой.

Например, длительная тупая боль, доставляемая медленными волокнами типа С, может подавляться быстрым уколом или щипком, который передают быстрые А-волокна. Вы просто перестанете чувствовать тупую боль, хотя её источник никуда не денется.

По этой же причине мы инстинктивно потираем больное место: касание и надавливание передают другие тактильные ощущения, которые снижают чувство боли.

Сигналы обрабатываются в головном мозге

Из спинного мозга сигнал попадает в головной мозг: через ствол мозга в таламус — центральный процессор всей сенсорной информации. В разных ядрах таламуса обрабатываются визуальные данные, звук, тактильные ощущения.

Из таламуса сигнал уходит в три области мозга:

  • Соматосенсорную кору. Эта структура устанавливает, из какой части тела пришёл сигнал о боли.
  • Островковую долю, или островок. Именно за счёт островка мы понимаем, насколько сильна боль, и испытываем по поводу неё какие-либо эмоции. Кроме того, островок играет роль и в формировании других эмоций: печали, радости, злости, отвращения, эмпатии и даже любви. Возможно, поэтому эмоции сильно влияют на восприятие боли. Доказано, что влюблённость снижает её: когда люди держатся за руки, боль стихает .
  • Переднюю поясную кору (ППК). Эта структура мозга связана со знаниями, устранением ошибок и конфликтов, вниманием и мотивацией. За счёт неё появляется стимул что-то сделать с болью (или не делать ничего). ППК решает, какие действия мы будем предпринимать, исходя из текущего положения дел.

Как видите, не существует горячей линии, по которой сигнал о повреждении доходил бы до мозга. Он проходит через столько сложных и многофункциональных структур, что легко может притупиться или, наоборот, развернуться на полную. При обработке сигналов мозг определяет его значимость, исходя из ситуации, предыдущего опыта, влияния культуры, ваших знаний и сенсорной информации: звука, запаха, картинки.

Боль — это не объективное ощущение, а вольная интерпретация мозга. Боль рождается именно в нём.

Можем ли мы управлять болью? Напрямую нет. Не забывайте, что ваше «я» — это тоже продукт мозга, один из его процессов. Поэтому вы управляете своим мозгом не больше, чем движение стрелки часов управляет механизмом этих часов.

Но мы можем что-то сделать, чтобы притупить чувство боли, через управление своими эмоциями и создание подходящей обстановки.

Как облегчить боль

Создайте комфортную обстановку

Мы описали только восходящие пути боли — от периферии в мозг, но существуют и обратные, нисходящие пути. Мозг не только определяет, как вы будете чувствовать боль, но и может влиять на чувствительность нервов: понижать её или повышать.

Когда вы нервничаете, мозг считает, что обстановка опасная. Поэтому он заставляет периферические нервы передавать ему больше информации. В результате вы острее чувствуете боль даже от незначительных стимулов.

Но мозг может сделать и обратное: если вы спокойны и находитесь в безопасности, периферические нервы могут воспринимать меньше стимулов и вы будете чувствовать меньше боли. Это выяснили ещё во время Второй мировой войны: солдаты чувствовали гораздо меньше боли, чем должны были при своих травмах, потому что были счастливы оказаться в безопасности, а не на поле боя.

Поверьте в то, что не будет больно

Воспринимайте события позитивно. Люди с быстрым эмоциональным восстановлением действительно чувствуют меньше боли.

Измените тактильные ощущения

Рецепторы в коже предают не только сигналы о боли, но и другие ощущения: касания, давление, холод, тепло. Поэтому многие практики вроде растирания, согревания или охлаждения, перетягивания бинтами или наклеивания тейпов помогают унять боль, не влияя при этом на её причину.

Попробуйте изменить тактильные ощущения в болезненной области, и боль тоже изменится.

Не драматизируйте

Поскольку боль — личное переживание, некоторые люди, чтобы передать её интенсивность, прибегают к художественным описаниям и чересчур драматизируют: «Боль впивается в меня раскалёнными иглами», «Боль полыхает пожаром».

Такие фразы вызовут сочувствие со стороны других людей, но могут обернуться против самого рассказчика. Описав боль красочными фразами, вы убеждаете свой мозг, что так оно и есть, и начинаете чувствовать свои фантазии.

Боритесь со страхом через знания

Неизвестность вызывает страх и тревожность, а они увеличивают восприятие боли. Если вас мучает боль неизвестного характера, сразу же сходите к врачу и узнайте от него максимум о своём заболевании.

Если он не дал достаточно информации, сходите к другому доктору или поищите научные труды на эту тему. Сделайте всё, чтобы успокоиться и почувствовать, что с вами в целом всё в порядке. Доказано , что знание причины боли помогает её уменьшить.

Не терпите боль: это может плохо закончиться

Дело даже в не том, что вы можете запустить какое-то опасное заболевание. Нервные рецепторы привыкают к боли и становятся более восприимчивыми. Не доводите до структурных изменений в нейронах, сделайте всё, чтобы избавиться от боли, пока она не переросла в хроническую.

Читайте также

  • Как стресс влияет на мозг →
  • Механизм страха: как отучить мозг бояться →
  • Как меняется мозг в течение менструального цикла →

Источник